Saturday, 9 November 2013

Playing with Big O - Complexity of different searching and sorting algorithm

While preparing for interview, I have wasted a lot of my time on summing down the best, average and worst case complexity of different searching and sorting algorithms. To save you guys from going through same pain, I am posting my work here. So, enjoy this cheat sheet while preparing for interview. 

Searching

Algorithm Data Structure Time Complexity Space Complexity
Average Worst Worst
Depth First Search (DFS) Graph of |V| vertices and |E| edges - O(|E| + |V|) O(|V|)
Breadth First Search (BFS) Graph of |V| vertices and |E| edges - O(|E| + |V|) O(|V|)
Binary search Sorted array of n elements O(log(n)) O(log(n)) O(1)
Linear (Brute Force) Array O(n) O(n) O(1)
Shortest path by Dijkstra,
using a Min-heap as priority queue
Graph with |V| vertices and |E| edges O((|V| + |E|) log |V|) O((|V| + |E|) log |V|) O(|V|)
Shortest path by Dijkstra,
using an unsorted array as priority queue
Graph with |V| vertices and |E| edges O(|V|^2) O(|V|^2) O(|V|)
Shortest path by Bellman-Ford Graph with |V| vertices and |E| edges O(|V||E|) O(|V||E|) O(|V|)

Sorting

Algorithm Data Structure Time Complexity Worst Case Auxiliary Space Complexity
Best Average Worst Worst
Quicksort Array O(n log(n)) O(n log(n)) O(n^2) O(n)
Mergesort Array O(n log(n)) O(n log(n)) O(n log(n)) O(n)
Heapsort Array O(n log(n)) O(n log(n)) O(n log(n)) O(1)
Bubble Sort Array O(n) O(n^2) O(n^2) O(1)
Insertion Sort Array O(n) O(n^2) O(n^2) O(1)
Select Sort Array O(n^2) O(n^2) O(n^2) O(1)
Bucket Sort Array O(n+k) O(n+k) O(n^2) O(nk)
Radix Sort Array O(nk) O(nk) O(nk) O(n+k)

Data Structures

Data Structure Time Complexity Space Complexity
Average Worst Worst
Indexing Search Insertion Deletion Indexing Search Insertion Deletion
Basic Array O(1) O(n) - - O(1) O(n) - - O(n)
Dynamic Array O(1) O(n) O(n) O(n) O(1) O(n) O(n) O(n) O(n)
Singly-Linked List O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n)
Doubly-Linked List O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n)
Skip List O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) O(n) O(n) O(n) O(n log(n))
Hash Table - O(1) O(1) O(1) - O(n) O(n) O(n) O(n)
Binary Search Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) O(n) O(n) O(n) O(n)
Cartresian Tree - O(log(n)) O(log(n)) O(log(n)) - O(n) O(n) O(n) O(n)
B-Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)
Red-Black Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)
Splay Tree - O(log(n)) O(log(n)) O(log(n)) - O(log(n)) O(log(n)) O(log(n)) O(n)
AVL Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)

Heaps

Heaps Time Complexity
Heapify Find Max Extract Max Increase Key Insert Delete Merge
Linked List (sorted) - O(1) O(1) O(n) O(n) O(1) O(m+n)
Linked List (unsorted) - O(n) O(n) O(1) O(1) O(1) O(1)
Binary Heap O(n) O(1) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(m+n)
Binomial Heap - O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n))
Fibonacci Heap - O(1) O(log(n))* O(1)* O(1) O(log(n))* O(1)

Graphs

Node / Edge Management Storage Add Vertex Add Edge Remove Vertex Remove Edge Query
Adjacency list O(|V|+|E|) O(1) O(1) O(|V| + |E|) O(|E|) O(|V|)
Incidence list O(|V|+|E|) O(1) O(1) O(|E|) O(|E|) O(|E|)
Adjacency matrix O(|V|^2) O(|V|^2) O(1) O(|V|^2) O(1) O(1)
Incidence matrix O(|V| ⋅ |E|) O(|V| ⋅ |E|) O(|V| ⋅ |E|) O(|V| ⋅ |E|) O(|V| ⋅ |E|) O(|E|)

2 comments: